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AbsIract-A general derivation of expressions for lower bounds to fundamental frequencies and buckling
loads is given for the class of structures governed by linear elastic theory in the prebuckling state. These
expressions involve two Rayleigh quotients both of which are upper bounds for the fundamental frequency
under a prescribed load. The displacement trial functions must satisfy force and kinematic continuity but no
other conditions are required. Thus, if appropriate high order base functions are used, the finite element
procedure can be used to systematically narrow the difference between the upper and lower bounds.

The theory is illustrated with several column and plate problems. The finite element method is applied to
uniform and nonuniform columns with a representative set of boundary conditions. Elementary trial
functions are used to show that reasonable bounds can also be obtained for plates sUbjected to known
states of stress. Since the lower bound is obtained with a variation of the classical technique of Rayleigh,
these results indicate that the method may be suitable for conservatively estimating buckling loads and
fundamental frequencies of engineering structures.

I. INTRODUCTION

The theory of elastic stability was initially formulated by Euler and the continued interest in
problems of this nature is indicative of the importance of the buckling phenomenon in the
design of modern structures. If structural elements cannot be modeled with uniform bending
stiffness, regular geometry, or certain boundary conditions, approximate solutions are invari
ably necessary. Several procedures are available but in the vast majority of cases, the buckling
load is computed as a Rayleigh quotient, which is actually an upper bound. This approach
violates the basic precept of engineering philosophy that the design of a structure based on an
approximate theory should be conservative. Unless the maximum possible error of the upper
bound is known, or what amounts to the same thing, unless a lower bound is computed, the use
of upper bounds with a factor of safety (unknown) is an untenable situation from the viewpoint
of sound engineering practice.

The value of lower bounds to buckling loads for comp~ex structures has been amply
demonstrated by the large number of papers on this and the related subject of lower bounds to
natural frequencies. The following brief survey is intended to illustrate the approaches that
have been attempted with no claim to thoroughness.

In 1935, Weinstein initiated a procedure with slight variations appearing in more recent
works. Weinstein's approach, as summarized by Gould[ll or by Weinstein and Stenger[2],
consists of exact solutions to a "base" problem with relaxed boundary conditions followed by a
sequence of solutions of "intermediate problems" in which the original boundary conditions are
progressively enforced with a Galerkin scheme. A variation to this approach in which the
physical domain is larger than the original one was introduced by Chi and Mulzet[3]. Constraint
conditions are theiiapplied to thecompiete "extra"doma1il rather thancollocating at points
along the physical boundary with the result of better convergence to the exact solution.

Bazley and Fox[4,5] have expressed what appears to be a similar approach with a more

tThis work is based on the dissertation submitted by the first author as partial fulfillment of the requirements for a
Ph.D. at the University of New Mexico.

:l:Author for correspondence.
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abstract formulation involving Hilbert space. The positive definite operators inherent in the
eigenvalue problem are decomposed in a systematic manner to provide simpler base problems.
This work was followed with several papers [6-10] that placed particular emphasis on the
natural frequencies of some elastic systems with numerous examples to illustrate the theory.

Fox et al. [II] stimulated a sequence of papers with their basic theorem which involved
normalized solutions to the governing differential equation. These solutions did not satisfy the
boundary conditions so collocation was used to meet the boundary conditions in an ap
proximate sense. Thus, this procedure is also related to that of Weinstein's.

Moler and Payne[12] generalized the initial theorem to the case of all symmetric operators
and then developed an additional theorem that provided a bound on eigenfunctions.
McLaurin [13] generalized these results somewhat and Nickel[14] considered an approach
which allowed approximate solutions to the governing equation as well.

The classical work of Kohn and Koto is described by Crandall[15] but the resulting
expression for a lower bound to the lowest eigenvalue requires a reasonable estimate to the
second eigenvalue. For buckling, the lowest eigenvalue is the one of interest and the necessity
of estimating the second eigenvalue can lead to some difficulty for complex structures.

A new quotient proposed by Nemat-Nasser with a corresponding development for upper
and lower bounds [16] on frequencies in layered composites appears to give excellent results
and a corresponding theory for buckling loads is expected. For a discrete system,
Thompson [17] has developed bounds to buckling loads by considering path derivatives.

Pnueli[18, 19] introduced a particular shift for one of the linear differential operators involv
ed in the buckling equation. This shift makes the problem tractable and provides a lower bound to
the buckling load for the original problem. The same operator was decomposed by Masur[20] to
provide a norm different from the one that is commonly used in buckling problems and to also
provide a system of equations to which solutions could be obtained. Both of these procedures
require some insight into the physical nature of the problem and certain criteria must be
satisfied.

Generally speaking, the methods utilized in the cited references require the construction of a
set of equations that are associated with the actual governing equations, a comparison theorem
for the eigenvalues of the two respective systems, and the construction of a suitable finite
dimensional subspace of the underlying Hilbert space. In some cases, exact solutions of the
associated system are required. Implicit in the vast majority of cases is the assumption that the
prebuckling stress field is known exactly.

From an engineering viewpoint, the construction of an appropriate associated set of
equations for a particular class of problems involves considerable ingenuity and the best
approach is not obvious for complex structures. Furthermore, exact solutions for those cases
where they are required may not be available unless the associated problem is chosen to be
quite elementary. This can lead to very poor bounds or a large number of iterations to arrive at
a satisfactory answer.

These difficulties are not inherent with the classical Rayleigh quotient [21] which provides
upper bounds to buckling loads. As associated system of equations are not required nor are
exact solutions to the governing equations. Instead, functions that just satisfy the geometric
boundary conditions are required, and coefficients of these functions can be chosen to minimize
the quotient. Provided that suitable sequences of functions are used, monotonic convergence to
the exact buckling load can be shown. Standard numerical procedures such as the finite element
method are directly applicable.

Similar advantages for computing a lower bound are suggested in a theorem given by
Isaacson and Keller[22],t This lower bound is given in terms of two upper bounds one of which
is the usual Rayleigh quotient. The other upper bound is also given as a quotient so there is the
possibility that the theorem can be adapted to continuous systems together with a simplified
procedure for obtaining lower bounds.

The method was first applied to a continuous system by Schreyer and Shih [23]. To
circumvent certain continuity requirements they formulated the column buckling problem in
terms of moment functions but in turn, these functions had to be orthogonal to the self-

tIt is not clear who discovered the theorem. See for example. Fox et al. [II].
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equilibrated functions that are associated with statically indeterminate columns. Popelar[24]
presented an elegant generalization in which the two quotients represent the classical Rayleigh
and Timoshenko loads and are associated with the principles of minimum potential energy and
complementary potential energy, respectively. Although examples involving the fundamental
frequency and the buckling of plates are given, the requirement of orthogonality to self
equilibrated stress fields is also inherent in this formulation. Such stress fields are finite in
number and specific for columns, but for two-dimensional problems such as plates, an infinite
number of these fields can exist, and consequently the requirement of orthogonality between
these functions and the set of assumed trial functions is a severe handicap for routine
computations of lower bounds. Ku[25, 26] has also used the same basic theorem in conjunction
with an innovative function iteration approach. However, since the iterations involve in
tegrations of admissible functions and since a problem dependent matrix must be inverted, it is
debatable that this method will prove to be useful for realistic engineering problems.

This paper presents an alternate formulation in which the natural frequency of vibration is
expressed in terms of a load parameter. This is a classical approach[27], but the adaptation of
the procedure to provide lower bounds to buckling loads is new. The advantage of the approach is
that the orthogonality conditions mentioned previously are no longer required. However, there
is an accompanying condition that the trial functions satisfy high order continuity requirements.
This may be a disadvantage for the finite element method although a recent work [28] indicates
that such conditions can be met. In addition to the development of the basic theorem, a
preliminary investigation is made of the feasibility of the method with applications to column
and plate problems some of which do not have closed form solutions.

2. LOWER BOUNDS BASED ON THE BASIC THEOREM

2.1 Original theorem
Since the theorem given in [22] is the basis for this work, it is presented separately in this

section. Certain minor modifications to the original presentation have been incorporated so that
the correspondence with the development in the next section can be easily shown.

Assume A is a self-adjoint positive-definite operator with a compact inverse and solutions to
the eigenvalue problem

Ay-Ay=O (2.1)

are denoted by the eigenvectors, XI> X2•••• ' which are associated with the eigenvalues
Al s; A2 s; .... Suppose that the eigenvectors have been normalized to satisfy the inner product
relation

(2.2)

Consider a trial vector x. The residual vector, 11, for any value of A is defined to be

(2.3)

and thus a measure of the error in the differential eqn (2.1) is given by the positive number F
where

(2.4)

The usual Rayleigh quotient, AR, and another quotient, AR, are defined by choosing A such that
(11; x) and (11; Ax) are zero, respectively. The result is

A - (Ax; x)
R - (x; x)

A = (Ax; Ax)
R (Ax; x) .

(2.5a)

(2.5b)
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For the sake of convenience, a third quotient, As, is introduced by the following relation:

A 2 =A i. =(Ax; Ax)
s R R (x; x) . (2.6)

This function is merely a second Rayleigh quotient associated with the eigenvalue problem

(2.7)

with eigenvectors xh X2,. ... , and eigenvalues A1
2$ Al $ .....

The eigenvectors Xi represent a complete basis for the infinite dimensional space so that any
vector x can be represented by the sum

(2.8)

in which ai denote constants.
The use of the definition of Ai and the substitution of eqns (2.2) and (2.8) into eqn (2.4) yields

p22: al =~al(Al- 2Ui +A2)
1 i

and hence

p2;:o:min(Ai- Af
i

Suppose A is sufficiently close to A1 and define ALto be

Then it follows from eqn (2.10) that

(2.9)

(2.10)

(2.11)

(2.12)

i.e. AL is a lower bound to the lowest eigenvalue. The Cauchy-Schwarz inequality can be used
to show the upper bound relations

(2.13)

The substitution of eqns (2.5a) and (2.6) into eqn (2.4) also yields

(2.14)

The requirement that Abe sufficiently close to AI can now be given explicity as the weaker of
the two relations

1
A$'2(A1+A2)

A$ ~ (Al- A1
2)/(AR - AI)'

(2.15a)

(2.15b)
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The first is a statement that A must be closer to At than any other eigenvalue [22] while the
second results from a consideration of eqns (2.10) and (2.14). Ku[25] was apparently the first to
recognize that for many cases eqn (2.15b) is not nearly as restrictive as eqn (2.15a).

Since Al and A2 are not known, suppose A is chosen to minimize p2. Then

and from eqn (2.11)

A=AR

(F2
)min = Ai - Ai

(2. 16a)

(2.16b)

(2.17)

Equation (2.17) is an explicit relation for a lower bound in terms of two upper bounds that are
normally easy to compute. The requirements that A = AR and that A satisfy eqns (2.l5a) or
(2.15b) are compatible conditions since AR is usually a very good upper bound to Al for a
reasonable choice of x.

If x is an approximation to XI that is accurate to first order in small parameter E, then AR and
As represent approximations to At that are accurate to second order in E. It follows from eqn
(2.17) that AL is an approximation to At that is accurate to first order in E. Thus, for reasonable
trial functions, the upper bounds will be better approximations to AI than the lower bound.

2.2 Extension to a more general problem
Although a study of the eigenvalue problem of eqn (2.1) is of considerable interest, this

equation is not directly applicable to problems of elastic stability. Instead, the eigenvalue
problem

Ay-ABy = 0 (2.18)

in which A and B are assumed to be positive definite operators which are not adjoint, is more
appropriate to the determination of lower bounds to elastic buckling loads. For two different
eigenvectors, Ya and YfJ' the orthogonality condition, (BYa; BYfJ) = 8afJ, is not satisfied and
consequently a direct development of a lower bound theorem from eqn (2.18) is not possible.

An alternate formulation that circumvents this difficulty is to define the operator

A=A-AB (2.19)

which is positive definite for small enough A and which is assumed to be self-adjoint. Now
consider the associated problem

Ay-Ay=O (2.20)

for fixed A.t The theory of the previous section can be applied directly to obtain the Rayleigh
quotients and the lower bounds

A (A) = (Ax; x)
R (x; x)

A 2(A) = (Ax; Ax)
s (x; x)

AdA) = AR - (Ai - Ai)I/2

(2.21a)

(2.21b)

(2.21c)

in which the dependence on A has been purposely emphasized, and for any value of A, the

tFor a continuous medium A is proportional to the square of the natural frequency.
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following inequality holds:
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(2.22)

Implicit in the formulation is the assumption that a trial function must satisfy the required
continuity and boundary conditionst associated with the quotient Ai. Thus, for certain
problems in which the boundary conditions involve A, the trial functions may be a function of A.

Consider the class of problems for which the boundary conditions and hence the trial
vectors do not depend on A. Then AR decreases linearly with A and Ai, which is positive,
semi-definite in A, initially descreases, and then increases quadratically with A. As shown in Fig.
I, define AL and AR as the values of A for which AL 0 and AR = 0, respectively. It follows
from eqns (2.21) and (2.22) that

(2.23)

which is the desired inequality.
For cases in Which trial vectors involve A, the behavior of the A's on A is more complicated

and it is not obvious that the same general properties should follow. However, the inequalities
of eqns (2.22) and (2.23) are satisfied and the bounds provide nontrivial results for all such
sample problems considered in this investigation.

2.3 A numerical procedure
For almost any buckling problem of engineering interest, and, in particular, for problems

used in this study to illustrate the effectiveness of the procedure, the exact formulation must be
replaced with a finite dimensional eigenvalue problem if an approximate solution is to be
obtained. This leads to an eigenvalue problem of the type.

Cz-ADz=O (2.24)

in which A denotes the eigenvalue. The eigenvector is given by z, D is a positive definite matrix
while C may be positive semi-definite. An efficient iterative scheme for obtaining a particular
eigenvalue is to use the power method, that is to solve the set of equations ..

[C (A(n-1l-I)D]z(n)=Dz(n-l); n=1,2, ...

(n) _ (z(n); Cz(n)
A - (z(n); Dz(n)

Fig. I. General behavior of Rayleigh quotients and AL as a function of A.

(2.25a)

(2.25b)

tOf course, only the kinematic conditions must be satisfied if AR is to be computed independently of this lower bound
procedure.
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in which a semi-colon denotes an inner product and with A(0) and z(O) chosen reasonably to
minimize the number of iterations. Gaussian elimination was used as a convenient method for
solving the matrix equation although other schemes may be more efficient for large scale
routine applications. The shift in the eigenvalue spectrum is introduced since a zero eigenvalue
is of interest. The iteration is terminated when both of the conditions

(2.26a)

(2.26b)

are satisfied where EI and E2 are suitably chosen positive constants and II~I denotes a norm of
the vector z.

For this application, the matrix eigenvalue problem can be formulated by minimizing either
AR or Ai. For either choice, a solution must be obtained for a sequence of values of A so that
the zero of AL and AR can be obtained. To minimize the number of eigenvalue evaluations, an
algorithm such as the secant method can be used.

3. APPLICATIONS TO COLUMNS

The basic equations of the previous section can be readily transformed into a notation that
is more commonly used in continuum mechanics. Since such adevelopment can be rather routinely
performed, the primary emphasis of this and the next section is placed on illustrating the use of the
basic theorem. Common structural elements are used for this purpose.

3.1 Theory
For a column of length L, the Kirchhoff and Euler assumptions yield the beam equation for

free vibration

V'-Aw=O (3.1)

in which w denotes the lateral displacement. If w is the natural frequency and J.L the mass
density per unit length, then

(3.2)

The prime denotes a derivative with respect to the dimensionless variable, x, with domain [0, 1].
The transverse shear, V, and bending moment, M, are related to was follows:

V=M'+APw'

M=EIw".

(3.3a)

(3.3b)

The bending stiffness, EI, and the "unit" axial force multiplied by L2
, which is denoted by P, are

functions of x. The magnitude of the load is represented by the parameter A. The boundary
conditions associated with the governing differential equation are

w = 0 or V = 0 and w' = 0 or M = 0 at x = 0, 1. (3.4)

An application of the theory given in the previous section yields the following forms for the
Rayleigh quotients:

AR =f [(Elw"w") - AP(W')2] dx/f w2dx

Ai=f (VI
)2 dXlf w2 dx.

(3.5a)

(3.5b)
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It follows that any trial function, w, as well as w', M and V must be continuous, and both the
kinematic and the force boundary conditions must be satisfied.

In order to sequentially improve the accuracy for the upper and lower bounds of the natural
frequency for a given axial load, a procedure for consistently improving the trial function is
required. There are several methods that can be applied. Perhaps the most classical approach is
to assume a free vibration mode composed of prescribed functions that satisfy the boundary
conditions with parameters that are chosen by minimizing one of the Rayleigh quadratic forms.

Another method of systematically improving the trial functions for the free vibration mode
is to use finite elements with the base functions for each element chosen so that the force and
kinematic continuity conditions are automatically satisfied. The base functions and matrix
development used for this portion of the study are given in the Appendix.

3.2 Numerical results
The analyses of several column problems were performed with the parameters w, w', M and

V at the end of each element defined as the components of z in eqns (2.25a) and (2.25b). As
expected, if the bounds are determined by minimizing the first Rayleigh quotient of eqn (3.5a)
the values of AR and AR decrease monotonically with an increase in the number of elements.
Generally speaking, As, AL and AL improve when N is increased but this behavior is not
guaranteed. An alternate procedure that was used in this study and which appears to provide
closer bounds is to minimize the second Rayleigh quotient and obtain corresponding values for
AR, AL , AR and AL .

Typical numerical results for Rayleigh and lower bounds of buckling loads as functions of N
are given in Tables 1-3. The bending stiffness distributions are given directly on the tables for
columns of unit length.

These results indicate a considerable improvement in the bounds given previously by
Schreyer and Shih[23] for the same problems. Table 1 shows the rate of convergence for
simply-supported and fixed-free lateral uniform columns, both of which have an exact buckling
load of 9.8696. Tables 2 and 3 provide similar results for nonuniform fixed-free, fixed-simply
supported and fixed-fixed columns for which exact buckling loads are not available. The best

Table t. Numerical results for uniform columns

Simply-Supported Fixed-Free Lateral

N £1 • 1, 0..s. x ..s. 1 £1 • 1, 0 ..s. x ..s. 1

AR AL AR At

1 9.8696 9.6446 9.8696 9.8063

2 9.8696 9.8582 9.8696 9.8499

3 9.8696 9.8669 9.8696 9.8639

4 9.8696 9.8653 9.8696 9.8641

Table 2. Numerical results for nonuniform columns

Fixed-Free Fixed-Simply Supported

EI - 2, 0..s. x ..s. 1/2 £1 - 2, o ..s. x ..s. 1/2
N

E1 - 1, 1/2 < x..s. 1 £1 • 1, 1/2 < x ..s. 1

AR At AR AL

2 4.1345 4.1335 25.1831 24.9355

3 4.1345 4.1312 25.1831 24.9361

4 4.1345 4.1275 25.1831 25.1678
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Table 3. Numerical results for nonuniform fixed-fixed columns

E1 • 2, o ~ x ~ 1/4 E1 • 2, o ~ x ~ 1/4

E1 • 1.7, 1/4 < x ~ 1/2 E1·1.5, 1/4 < x ~ 3/4

N E1· 1.3, 1/2 < x ~ 3/4 E1 • 1, 3/4 < x .::. 1

E1 • 1, 3/4 < x ~ 1

AR AL AR AL

4 56.3010 56.1435 57.9753 57.8192

6 56.3010 56.2010 57.9753 57.8395

8 56.3010 56.2499 57.9753 57.9250

1021

lower bound for each column differs from the upper bound by less then 0.1% of the upper
bound.

4. APPLICATIONS TO RECTANGULAR PLATES

4.1 Theory
For an isotropic, uniform plate subjected to in-plane forces, von Karman's equation for free

vibration is

in which w denotes the lateral displacement, and

A == J-LUJ2

Eh 3

D == 12(1- ,,,2)

(4.1)

(4.13)

(4.2b)

where Young's modulus, Poisson's ratio, the plate thickness and the mass density per unit area are
given by E, II, hand J-L, respectively. The negative of N~~ represents the prebuckling membrane
forces for a "unit load". In this section Greek indices assume the values 1and 2and the summation
convention is used.

For convenience, let n denote a unit vector normal to the edge of the plate and associate this
vector with a normal cartesian coordinate n. Similarly, consider a locally cartesian coordinate·s
with tangent vector 5 directed in the counter-clockwise direction around the edge of the plate for
any point along the edge. Furthermore let,

Vy~ D[(1- 1I)/jay8fJp + v/)aplj,.,,] W.a~p + AN~yw.a

Mil == D[(1- 1I)8ay8fJp + v/)aplj,.,,] w.~npn'Y

M... == D[(1- 1I)/j~fJp+ v/)a~/j,.,,] w.~npn'Y"

Then eqn (4.1) becomes

Vy,y - Aw == 0 on R

with the boundary conditions

Vyny +M....., == 0 or w == o~! aR. -on
Mil == 0 or W. II == 0

and the requirement that M... or w be' continuous at each corner.

(4.3a)

(4.3b)

(4.3c)

(4.4)

(4.5)
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The Rayleigh quotients for this class of problems become

1[D{(l- v)8ay8fjp + v8afj8yp}w,afjW.yp - AN~fjW,aW,fj] dApA
R

= ~R:.:..- --:- _

fR w
2
dAp

(4.6a)

(4.6b)

in which dAp denotes a plate area element for the region R.

4.2 Sample results
For the sake of definiteness, eqns (4.6a), (4.6b) and (2.21c) are used to obtain Rayleigh

quotients and lower bounds for five simple problems. For each case D = 1, v = 0.3 and the plate
is a unit square defined by 0:5 X :5 1, 0:5 Y:5 1.

The first three cases represent plates under uniform compression, i.e. N~fj = 8afj while the
last two involve slight generalizations to nonuniform stress. Although the exact displacement
function is known in the first case, a polynomial function that satisfies the boundary conditions
is used to illustrate that nontrivial (greater than zero) lower bounds can be obtained. The results
are summarized as follows:

Problem 1. Plate simply supported on all sides
W = a(x4 -2x3+x)(l-2y3+ y)

AR = 19.8 AL = 16.5

AI =21T2 = 19.7 [Ref. 21].

Problem 2. Plate clamped on all sides.

(a)

AR = 54.0 AL = 19.1.

(b) W = a(l- cos 21Tx)(1- cos 27Ty)

AR =52.6 AL =28.0

Al = 5.301T2 = 52.3 [Refs. 21 and 29].
Problem 3. Plate simply supported on two opposite sides and clamped on the other two

sides

W = a(x4
- 2x3 +x)(l- 2l + i)

AR =38.5 AL = 20.8

Al = 3.8h2 = 37.8 [Ref. 29].
Problem 4. Plate simply supported on all sides with nonuniform stress field. The displace

ment and prebuckling stress fields are given as follows:
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IDENTICAL LOADING
ON ALL SIDES SQUARE

PLATE

18

15

-1.0 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1.0

E

Fig. 2. Upper and lower bounds for buckling loads of a simply supported plate with nonuniform stress field.

1023

where the constant, E, is a stress distribution parameter. Lower and upper bounds as a function
of E are shown in Fig. 2. The fact that both the upper and lower bounds decrease with negative
E is highly significant in that this is an indication that if the prebuckling stresses are not known
exactly, computed buckling loads based on a uniform but statically equivalent prebuckling
stress field may not be conservative.

Problem 5. Two opposite edges simply supported and two edges free with unequal but
uniform prebuckling stress components. Consider a plate for which the edges x =0 and x = 1
are simply supported and the other two edges (y =0 and y = 1) are free. The stress field is
assumed to be N22 = I, N I2 = 0 and Nil = /( where the parameter /( is a constant. Let

w(x, y) = af(y) sin 'lTX

20

ASYMMETRICAL MODE

..< 15

10 SYMMETRICAL MODE

T ---J.., T
o 0.5 1.0

/(

Fig. 3. Upper and lower bounds for buckling loads of a plate with two opposite edges simply supported and
two free edges.

ss Vol. 14, No. 12-1;
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in which
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5

f(y) = 1+ L anyn
n=1

is the lowest order polynomial that is admissible. For a given value of A, the coefficients an are
chosen to satisfy the conditions of zero moment and shear on the free edges in addition to the
requirement of f(O) = fO) for a symmetrical buckling mode or f(O) =- fO) for an antisym
metrical mode. The results are shown in Fig. 3 which shows plots of AR and AL as a function of
K. The closeness of the bounds is merely a reflection of the fact that the assumed displacement
field accurately reflects the characteristics of the exact solution.

Although these plate problems are somewhat elementary, they do illustrate that this lower
bound procedure can provide reasonable, and in some cases, very good results. The underlying
reason for the significantly poorer lower bounds for problems involving fixed boundaries is not
known and further investigations in this area would be worthwhile. The use of higher order
elements such as those suggested by Gopalacharyulu [28] would provide the necessary
continuity requirements and make the procedure amendable to a systematic finite element
analysis for plates with a variable stress field and arbitrary boundaries.

5. SUMMARY AND CONCLUSIONS

With the use of a natural frequency parameter, the Isaacson-Keller lower bound theorem
has been extended to include buckling problems of elastic structures. Trial functions can be
systematically improved with a procedure involving finite elements. Bounds on the buckling
load are obtained with a formulation of minimizing either the first or second Rayleigh quotient.
However, the minimization of one Rayleigh quotient does not guarantee monotonic improve
ment for the other Rayleigh quotient and the lower bound, although these latter two parameters
generally do get better. Round-off error also causes problems when a numerical procedure with
a large number of elements is used.

The theorem is applicable provided the Rayleigh upper bound is sufficiently close to the
fundamental frequency. Since simplified problems can be used as a guide for the choice of an
approximation to the buckling mode, this requirement offers no practical barrier to the use of
the theorem. Of much more serious consequence is the requirement that the force boundary
and continuity conditions be satisfied. Also, it has been implicitly assumed that the exact
functions for the prebuckling stresses are known. If the theorem is to become a routine
analytical procedure, it is essential that these conditions be relaxed. Further research on these
aspects would seem to be particularly appropriate. Any advancement in this regard might also
provide some insight into the reason for the poor lower bounds for clamped-edged plates.

In spite of these restrictions, there are several advantages associated with the procedure in
its present form. The use of the theorem is simple, solutions of intermediate problems are not
required, and the lower bound converges to the buckling load although at a slower rate than the
Rayleigh upper bounds. The feasibility of the theorem for engineering structures has been
demonstrated with the analyses of column and plate problems. In most cases, the lower bounds
are close enough to the upper bounds to serve as useful design values. Furthermore, it is
believed that this work provides the basis for the development of equations so that routine
calculations can be made to obtain lower bounds to buckling loads and fundamental frequencies
for more complex engineering structures.
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APPENDIX
The development of finite element equations for the analysis of columns is based on the following displacement field for

each element:

,[ APh 2
!4(y)] h2 ML

W= wJ,(y)+ hWL f2(y)- EI 768 + EI2l h(y)

h
3

VL ,[ APh
2
My)]+EI768 fb )+ wJs(y)+hWR My)- EI 768

h2 MR h3 VR
+EI 2l f7(y) + EI768 fs(y).

(A\)

The nondimensionallength of the element is h, and y has the range [0, h]; WL, wL ML, Vv WR, wk, MRand Vk denote the
displacement, slope, bending moment and shear force at the left and right ends of an element, respectively. Consequently
the kinematic and force continuity and boundary conditions are automatically satisfied. The base functions are:

f,(y) = 1- 35(*)
4

+ 84(*)S -70(i)6 + 20(i)7

Y (y)4 (y)S (y)6 (y)7f2(y)=1i- 20 Ii -45 Ii -36 Ii + 10 Ii

[ I (y)2 (y)4 (y)S 15 (y)6 (y)7]h(y)=21 2 Ii -5 Ii + 10 Ii -2 Ii +2 Ii

[ 1(y)3 2 (y)4 (y)S 2 (y)6 l(y)7]f4(y)=768 6 Ii -3 Ii + Ii -3 Ii +(; Ii

fs(Y) = 35(*Y - 84(iY + 70(iY - 20(*Y

My) = -15(*y + 39(fY - 34(fY + lO(fY

[5 (y)4 (y)S 13 (y)6 (y)7]h(y)=21 2 Ii -7 Ii +2 Ii -2 Ii

[
I (y)4 I (y)S I (y)6 I (y)7]fs(y) = 768 -(; Ii +2 Ii -2 Ii +(; Ii
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in which scaling constants have been introduced to yield inner products of the same order of magnitude for all pairs.
For each element, let the components of matrices K1

••.•• K5 be defined as follows:

2~6L(j'I"f'i +ri/i") dy

1 (I f"'''dhi Jo jJ i Y

l. (' tJidy
h2 Jo

L'fJ;dY i,j= \, ... 8.

Then the required integrals for each element become

i [(Elw")"+ APw'12dx =zT[(E/)2K 1+ 2EIAPK2+(APfKJ]z

[[(EIW"W")- APw'w']dx = zT[EIK3 +APK4]z

i w2 dx =zTK5z

in which

(A3)

(A4)

(A5)

El and P are assumed to be constant over each element. The integrals for the complete column are obtained by a simple
summation to include all elements.


